285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794 | class OpenAIChatCompletionsModel(Model):
"""OpenAI Chat Completions Model"""
INTERMEDIATE_LOG_INTERVAL = 5
def __init__(
self,
model: str | ChatModel,
openai_client: AsyncOpenAI,
) -> None:
self.model = model
self._client = openai_client
# Check if we're using OLLAMA models
self.is_ollama = os.getenv('OLLAMA') is not None and os.getenv('OLLAMA').lower() != 'false'
self.empty_content_error_shown = False
# Track interaction counter and token totals for cli display
self.interaction_counter = 0
self.total_input_tokens = 0
self.total_output_tokens = 0
self.total_reasoning_tokens = 0
self.total_cost = 0.0
self.agent_name = "Agent" # Default name
# Flags for CLI integration
self.disable_rich_streaming = False # Prevents creating a rich panel in the model
self.suppress_final_output = False # Prevents duplicate output at end of streaming
# Initialize the session logger
self.logger = get_session_recorder()
def set_agent_name(self, name: str) -> None:
"""Set the agent name for CLI display purposes."""
self.agent_name = name
def _non_null_or_not_given(self, value: Any) -> Any:
return value if value is not None else NOT_GIVEN
async def get_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
tracing: ModelTracing,
) -> ModelResponse:
# Increment the interaction counter for CLI display
self.interaction_counter += 1
self._intermediate_logs()
# Stop idle timer and start active timer to track LLM processing time
stop_idle_timer()
start_active_timer()
with generation_span(
model=str(self.model),
model_config=dataclasses.asdict(model_settings)
| {"base_url": str(self._client.base_url)},
disabled=tracing.is_disabled(),
) as span_generation:
# Prepare the messages for consistent token counting
converted_messages = _Converter.items_to_messages(input)
if system_instructions:
converted_messages.insert(
0,
{
"content": system_instructions,
"role": "system",
},
)
# Add support for prompt caching for claude (not automatically applied)
# Gemini supports it too
# https://www.anthropic.com/news/token-saving-updates
# Maximize cache efficiency by using up to 4 cache_control blocks
if ((str(self.model).startswith("claude") or
"gemini" in str(self.model)) and
len(converted_messages) > 0):
# Strategy: Cache the most valuable messages for maximum savings
# 1. System message (always first priority)
# 2. Long user messages (high token count)
# 3. Assistant messages with tool calls (complex context)
# 4. Recent context (last message)
cache_candidates = []
# Always cache system message if present
for i, msg in enumerate(converted_messages):
if msg.get("role") == "system":
cache_candidates.append((i, len(str(msg.get("content", ""))), "system"))
break
# Find long user messages and assistant messages with tool calls
for i, msg in enumerate(converted_messages):
content_len = len(str(msg.get("content", "")))
role = msg.get("role")
if role == "user" and content_len > 500: # Long user messages
cache_candidates.append((i, content_len, "user"))
elif role == "assistant" and msg.get("tool_calls"): # Tool calls
cache_candidates.append((i, content_len + 200, "assistant_tools")) # Bonus for tool calls
# Always consider the last message for recent context
if len(converted_messages) > 1:
last_idx = len(converted_messages) - 1
last_msg = converted_messages[last_idx]
last_content_len = len(str(last_msg.get("content", "")))
cache_candidates.append((last_idx, last_content_len, "recent"))
# Sort by value (content length) and select top 4 unique indices
cache_candidates.sort(key=lambda x: x[1], reverse=True)
selected_indices = []
for idx, _, msg_type in cache_candidates:
if idx not in selected_indices:
selected_indices.append(idx)
if len(selected_indices) >= 4: # Max 4 cache blocks
break
# Apply cache_control to selected messages
for idx in selected_indices:
msg_copy = converted_messages[idx].copy()
msg_copy["cache_control"] = {"type": "ephemeral"}
converted_messages[idx] = msg_copy
# # --- Add to message_history: user, system, and assistant tool call messages ---
# # Add system prompt to message_history
# if system_instructions:
# sys_msg = {
# "role": "system",
# "content": system_instructions
# }
# add_to_message_history(sys_msg)
# Add user prompt(s) to message_history
if isinstance(input, str):
user_msg = {
"role": "user",
"content": input
}
add_to_message_history(user_msg)
# Log the user message
self.logger.log_user_message(input)
elif isinstance(input, list):
for item in input:
# Try to extract user messages
if isinstance(item, dict):
if item.get("role") == "user":
user_msg = {
"role": "user",
"content": item.get("content", "")
}
add_to_message_history(user_msg)
# Log the user message
if item.get("content"):
self.logger.log_user_message(item.get("content"))
# IMPORTANT: Ensure the message list has valid tool call/result pairs
# This needs to happen before the API call to prevent errors
try:
from cai.util import fix_message_list
converted_messages = fix_message_list(converted_messages)
except Exception as e:
pass
# Get token count estimate before API call for consistent counting
estimated_input_tokens, _ = count_tokens_with_tiktoken(converted_messages)
# Pre-check price limit using estimated input tokens and a conservative estimate for output
# This prevents starting a request that would immediately exceed the price limit
if hasattr(COST_TRACKER, "check_price_limit"):
# Use a conservative estimate for output tokens (roughly equal to input)
estimated_cost = calculate_model_cost(str(self.model),
estimated_input_tokens,
estimated_input_tokens) # Conservative estimate
try:
COST_TRACKER.check_price_limit(estimated_cost)
except Exception as e:
# Stop active timer and start idle timer before re-raising the exception
stop_active_timer()
start_idle_timer()
raise
try:
response = await self._fetch_response(
system_instructions,
input,
model_settings,
tools,
output_schema,
handoffs,
span_generation,
tracing,
stream=False,
)
except KeyboardInterrupt:
# Handle KeyboardInterrupt during API call
# Make sure to clean up anything needed for proper state before allowing interrupt to propagate
# If this call generated any tool calls, they were stored in _Converter.recent_tool_calls but
# we couldn't add them to message_history since we didn't get the response.
# We should generate synthetic responses to avoid broken message sequences.
# Add synthetic tool output to prevent errors in next turn
if hasattr(_Converter, 'tool_outputs') and hasattr(_Converter, 'recent_tool_calls'):
# Add a placeholder response for any tool call generated during this interaction
# We don't know the actual tool calls, so we'll use what we know from timing
# Any tool call that was generated within the last 5 seconds is likely from this interaction
import time
current_time = time.time()
for call_id, call_info in list(_Converter.recent_tool_calls.items()):
if 'start_time' in call_info and (current_time - call_info['start_time']) < 5.0:
# Add a placeholder output for this tool call
_Converter.tool_outputs[call_id] = "Operation interrupted by user (KeyboardInterrupt)"
# Let the interrupt propagate up to end the current operation
stop_active_timer()
start_idle_timer()
raise
import sys
if _debug.DONT_LOG_MODEL_DATA:
logger.debug("Received model response")
else:
import json
logger.debug(
f"LLM resp:\n{json.dumps(response.choices[0].message.model_dump(), indent=2)}\n"
)
# Ensure we have reasonable token counts
if response.usage:
input_tokens = response.usage.prompt_tokens
output_tokens = response.usage.completion_tokens
total_tokens = response.usage.total_tokens
# Use estimated tokens if API returns zeroes or implausible values
if input_tokens == 0 or input_tokens < (len(str(input)) // 10): # Sanity check
input_tokens = estimated_input_tokens
total_tokens = input_tokens + output_tokens
# # Debug information
# print(f"\nDEBUG CONSISTENT TOKEN COUNTS - API tokens: input={input_tokens}, output={output_tokens}, total={total_tokens}")
# print(f"Estimated tokens were: input={estimated_input_tokens}")
else:
# If no usage info, use our estimates
input_tokens = estimated_input_tokens
output_tokens = 0
total_tokens = input_tokens
# print(f"\nDEBUG CONSISTENT TOKEN COUNTS - No API tokens, using estimates: input={input_tokens}, output={output_tokens}")
# Update token totals for CLI display
self.total_input_tokens += input_tokens
self.total_output_tokens += output_tokens
if (response.usage and
hasattr(response.usage, 'completion_tokens_details') and
response.usage.completion_tokens_details and
hasattr(response.usage.completion_tokens_details, 'reasoning_tokens')):
self.total_reasoning_tokens += response.usage.completion_tokens_details.reasoning_tokens
# Check if this message contains tool calls
tool_output = None
should_display_message = True
if (hasattr(response.choices[0].message, 'tool_calls') and
response.choices[0].message.tool_calls):
# For each tool call in the message, get corresponding output if available
for tool_call in response.choices[0].message.tool_calls:
call_id = tool_call.id
# Check if this tool call has already been displayed
if (hasattr(_Converter, 'tool_outputs') and call_id in _Converter.tool_outputs):
tool_output_content = _Converter.tool_outputs[call_id]
# Check if this is a command sent to an existing async session
is_async_session_input = False
has_auto_output = False
is_regular_command = False
try:
import json
args = json.loads(tool_call.function.arguments)
# Check if this is a regular command (not a session command)
if (isinstance(args, dict) and
args.get("command") and
not args.get("session_id") and
not args.get("async_mode")):
is_regular_command = True
# Only consider it an async session input if it has session_id AND it's not creating a new session
elif (isinstance(args, dict) and
args.get("session_id") and
not args.get("async_mode") and # Not creating a new session
not args.get("creating_session")): # Not marked as session creation
is_async_session_input = True
# Check if this has auto_output flag
has_auto_output = args.get("auto_output", False)
except:
pass
# For regular commands that were already shown via streaming, suppress the agent message
if is_regular_command and tool_call.function.name == "generic_linux_command":
# Check if this was executed very recently (likely shown via streaming)
if (hasattr(_Converter, 'recent_tool_calls') and
call_id in _Converter.recent_tool_calls):
tool_call_info = _Converter.recent_tool_calls[call_id]
if 'start_time' in tool_call_info:
import time
time_since_execution = time.time() - tool_call_info['start_time']
# If executed within last 2 seconds, it was likely shown via streaming
if time_since_execution < 2.0:
should_display_message = False
tool_output = None
elif is_async_session_input:
should_display_message = True
tool_output = None
# For async session inputs without auto_output, always show the agent message
elif is_async_session_input and not has_auto_output:
should_display_message = True
tool_output = None
# For session creation messages, also show them
elif ("Started async session" in tool_output_content or
"session" in tool_output_content.lower() and "async" in tool_output_content.lower()):
should_display_message = True
tool_output = None
else:
# For other tool calls, check if we should suppress based on timing
# Only suppress if this tool was JUST executed (within last 2 seconds)
if (hasattr(_Converter, 'recent_tool_calls') and
call_id in _Converter.recent_tool_calls):
tool_call_info = _Converter.recent_tool_calls[call_id]
if 'start_time' in tool_call_info:
import time
time_since_execution = time.time() - tool_call_info['start_time']
# Only suppress if this was executed very recently
if time_since_execution < 2.0:
should_display_message = False
else:
# For older tool calls, show the message
should_display_message = True
break
# Additional check: Always show messages that have text content
# This ensures agent explanations are not suppressed
if (hasattr(response.choices[0].message, 'content') and
response.choices[0].message.content and
str(response.choices[0].message.content).strip()):
# If the message has actual text content, always show it
should_display_message = True
# Display the agent message (this will show the command for async sessions)
if should_display_message:
# Ensure we're in non-streaming mode for proper markdown parsing
previous_stream_setting = os.environ.get('CAI_STREAM', 'false')
os.environ['CAI_STREAM'] = 'false' # Force non-streaming mode for markdown parsing
# Print the agent message for CLI display
cli_print_agent_messages(
agent_name=getattr(self, 'agent_name', 'Agent'),
message=response.choices[0].message,
counter=getattr(self, 'interaction_counter', 0),
model=str(self.model),
debug=False,
interaction_input_tokens=input_tokens,
interaction_output_tokens=output_tokens,
interaction_reasoning_tokens=(
response.usage.completion_tokens_details.reasoning_tokens
if response.usage and hasattr(response.usage, 'completion_tokens_details')
and response.usage.completion_tokens_details
and hasattr(response.usage.completion_tokens_details, 'reasoning_tokens')
else 0
),
total_input_tokens=getattr(self, 'total_input_tokens', 0),
total_output_tokens=getattr(self, 'total_output_tokens', 0),
total_reasoning_tokens=getattr(self, 'total_reasoning_tokens', 0),
interaction_cost=None,
total_cost=None,
tool_output=tool_output, # Pass tool_output only when needed
suppress_empty=True # Keep suppress_empty=True as requested
)
# Restore previous streaming setting
os.environ['CAI_STREAM'] = previous_stream_setting
# --- Add assistant tool call to message_history if present ---
# If the response contains tool_calls, add them to message_history as assistant messages
assistant_msg = response.choices[0].message
if hasattr(assistant_msg, "tool_calls") and assistant_msg.tool_calls:
for tool_call in assistant_msg.tool_calls:
# Compose a message for the tool call
tool_call_msg = {
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": tool_call.id,
"type": tool_call.type,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments
}
}
]
}
add_to_message_history(tool_call_msg)
# Save the tool call details for later matching with output
# This is important for non-streaming mode to track tool calls properly
if not hasattr(_Converter, 'recent_tool_calls'):
_Converter.recent_tool_calls = {}
# Store the tool call by ID for later reference
import time
_Converter.recent_tool_calls[tool_call.id] = {
'name': tool_call.function.name,
'arguments': tool_call.function.arguments,
'start_time': time.time(),
'execution_info': {
'start_time': time.time()
}
}
# Log the assistant tool call message
tool_calls_list = []
for tool_call in assistant_msg.tool_calls:
tool_calls_list.append({
"id": tool_call.id,
"type": tool_call.type,
"function": {
"name": tool_call.function.name,
"arguments": tool_call.function.arguments
}
})
self.logger.log_assistant_message(None, tool_calls_list)
# If the assistant message is just text, add it as well
elif hasattr(assistant_msg, "content") and assistant_msg.content:
asst_msg = {
"role": "assistant",
"content": assistant_msg.content
}
add_to_message_history(asst_msg)
# Log the assistant message
self.logger.log_assistant_message(assistant_msg.content)
# En no-streaming, también necesitamos añadir cualquier tool output al message_history
# Esto se hace procesando los items de output del ModelResponse
items = _Converter.message_to_output_items(response.choices[0].message)
# Además, necesitamos añadir los tool outputs que se hayan generado
# durante la ejecución de las herramientas
if hasattr(_Converter, 'tool_outputs'):
for call_id, output_content in _Converter.tool_outputs.items():
# Verificar si ya existe un mensaje tool con este call_id en message_history
tool_msg_exists = any(
msg.get("role") == "tool" and msg.get("tool_call_id") == call_id
for msg in message_history
)
if not tool_msg_exists:
# Añadir el mensaje tool al message_history
tool_msg = {
"role": "tool",
"tool_call_id": call_id,
"content": output_content
}
add_to_message_history(tool_msg)
# Log the complete response for the session
self.logger.rec_training_data(
{
"model": str(self.model),
"messages": converted_messages,
"stream": False,
"tools": [t.params_json_schema for t in tools] if tools else [],
"tool_choice": model_settings.tool_choice
},
response,
self.total_cost
)
usage = (
Usage(
requests=1,
input_tokens=input_tokens,
output_tokens=output_tokens,
total_tokens=input_tokens + output_tokens,
)
if response.usage or input_tokens > 0
else Usage()
)
if tracing.include_data():
span_generation.span_data.output = [response.choices[0].message.model_dump()]
span_generation.span_data.usage = {
"input_tokens": usage.input_tokens,
"output_tokens": usage.output_tokens,
}
items = _Converter.message_to_output_items(response.choices[0].message)
# For non-streaming responses, make sure we also log token usage with compatible field names
# This ensures both streaming and non-streaming use consistent naming
if not hasattr(response, 'usage'):
response.usage = {}
if hasattr(response.usage, 'prompt_tokens') and not hasattr(response.usage, 'input_tokens'):
response.usage.input_tokens = response.usage.prompt_tokens
if hasattr(response.usage, 'completion_tokens') and not hasattr(response.usage, 'output_tokens'):
response.usage.output_tokens = response.usage.completion_tokens
# Ensure cost is properly initialized
if not hasattr(response, 'cost'):
response.cost = None
return ModelResponse(
output=items,
usage=usage,
referenceable_id=None,
)
# Stop active timer and start idle timer when response is complete
stop_active_timer()
start_idle_timer()
async def stream_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
tracing: ModelTracing,
) -> AsyncIterator[TResponseStreamEvent]:
"""
Yields a partial message as it is generated, as well as the usage information.
"""
# Initialize streaming contexts as None
streaming_context = None
thinking_context = None
stream_interrupted = False
try:
# IMPORTANT: Pre-process input to ensure it's in the correct format
# for streaming. This helps prevent errors during stream handling.
if not isinstance(input, str):
# Convert input items to messages and verify structure
try:
input_items = list(input) # Make sure it's a list
# Pre-verify the input messages to avoid errors during streaming
from cai.util import fix_message_list
# Apply fix_message_list to the input items that are dictionaries
dict_items = [item for item in input_items if isinstance(item, dict)]
if dict_items:
fixed_dict_items = fix_message_list(dict_items)
# Replace the original dict items with fixed ones while preserving non-dict items
new_input = []
dict_index = 0
for item in input_items:
if isinstance(item, dict):
if dict_index < len(fixed_dict_items):
new_input.append(fixed_dict_items[dict_index])
dict_index += 1
else:
new_input.append(item)
# Update input with the fixed version
input = new_input
except Exception as e:
print(f"Warning: Error pre-processing input for streaming: {e}")
# Continue with original input even if pre-processing failed
# Increment the interaction counter for CLI display
self.interaction_counter += 1
self._intermediate_logs()
# Stop idle timer and start active timer to track LLM processing time
stop_idle_timer()
start_active_timer()
# --- Check if streaming should be shown in rich panel ---
should_show_rich_stream = os.getenv('CAI_STREAM', 'false').lower() == 'true' and not self.disable_rich_streaming
# Create streaming context if needed
if should_show_rich_stream:
try:
streaming_context = create_agent_streaming_context(
agent_name=self.agent_name,
counter=self.interaction_counter,
model=str(self.model)
)
except Exception as e:
print(f"Warning: Could not create streaming context: {e}")
streaming_context = None
with generation_span(
model=str(self.model),
model_config=dataclasses.asdict(model_settings)
| {"base_url": str(self._client.base_url)},
disabled=tracing.is_disabled(),
) as span_generation:
# Prepare messages for consistent token counting
converted_messages = _Converter.items_to_messages(input)
if system_instructions:
converted_messages.insert(
0,
{
"content": system_instructions,
"role": "system",
},
)
# Add support for prompt caching for claude (not automatically applied)
# Gemini supports it too
# https://www.anthropic.com/news/token-saving-updates
# Maximize cache efficiency by using up to 4 cache_control blocks
if ((str(self.model).startswith("claude") or
"gemini" in str(self.model)) and
len(converted_messages) > 0):
# Strategy: Cache the most valuable messages for maximum savings
# 1. System message (always first priority)
# 2. Long user messages (high token count)
# 3. Assistant messages with tool calls (complex context)
# 4. Recent context (last message)
cache_candidates = []
# Always cache system message if present
for i, msg in enumerate(converted_messages):
if msg.get("role") == "system":
cache_candidates.append((i, len(str(msg.get("content", ""))), "system"))
break
# Find long user messages and assistant messages with tool calls
for i, msg in enumerate(converted_messages):
content_len = len(str(msg.get("content", "")))
role = msg.get("role")
if role == "user" and content_len > 500: # Long user messages
cache_candidates.append((i, content_len, "user"))
elif role == "assistant" and msg.get("tool_calls"): # Tool calls
cache_candidates.append((i, content_len + 200, "assistant_tools")) # Bonus for tool calls
# Always consider the last message for recent context
if len(converted_messages) > 1:
last_idx = len(converted_messages) - 1
last_msg = converted_messages[last_idx]
last_content_len = len(str(last_msg.get("content", "")))
cache_candidates.append((last_idx, last_content_len, "recent"))
# Sort by value (content length) and select top 4 unique indices
cache_candidates.sort(key=lambda x: x[1], reverse=True)
selected_indices = []
for idx, _, msg_type in cache_candidates:
if idx not in selected_indices:
selected_indices.append(idx)
if len(selected_indices) >= 4: # Max 4 cache blocks
break
# Apply cache_control to selected messages
for idx in selected_indices:
msg_copy = converted_messages[idx].copy()
msg_copy["cache_control"] = {"type": "ephemeral"}
converted_messages[idx] = msg_copy
# # --- Add to message_history: user, system prompts ---
# if system_instructions:
# sys_msg = {
# "role": "system",
# "content": system_instructions
# }
# add_to_message_history(sys_msg)
if isinstance(input, str):
user_msg = {
"role": "user",
"content": input
}
add_to_message_history(user_msg)
# Log the user message
self.logger.log_user_message(input)
elif isinstance(input, list):
for item in input:
if isinstance(item, dict):
if item.get("role") == "user":
user_msg = {
"role": "user",
"content": item.get("content", "")
}
add_to_message_history(user_msg)
# Log the user message
if item.get("content"):
self.logger.log_user_message(item.get("content"))
# Get token count estimate before API call for consistent counting
estimated_input_tokens, _ = count_tokens_with_tiktoken(converted_messages)
# Pre-check price limit using estimated input tokens and a conservative estimate for output
# This prevents starting a stream that would immediately exceed the price limit
if hasattr(COST_TRACKER, "check_price_limit"):
# Use a conservative estimate for output tokens (roughly equal to input)
estimated_cost = calculate_model_cost(str(self.model),
estimated_input_tokens,
estimated_input_tokens) # Conservative estimate
try:
COST_TRACKER.check_price_limit(estimated_cost)
except Exception as e:
# Ensure streaming context is cleaned up in case of errors
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
except Exception:
pass
# Stop active timer and start idle timer before re-raising the exception
stop_active_timer()
start_idle_timer()
raise
response, stream = await self._fetch_response(
system_instructions,
input,
model_settings,
tools,
output_schema,
handoffs,
span_generation,
tracing,
stream=True,
)
usage: CompletionUsage | None = None
state = _StreamingState()
# Manual token counting (when API doesn't provide it)
output_text = ""
estimated_output_tokens = 0
# Initialize a streaming text accumulator for rich display
streaming_text_buffer = ""
# For tool call streaming, accumulate tool_calls to add to message_history at the end
streamed_tool_calls = []
# Initialize Claude thinking display if applicable
if should_show_rich_stream: # Only show thinking in rich streaming mode
thinking_context = start_claude_thinking_if_applicable(
str(self.model),
self.agent_name,
self.interaction_counter
)
# Ollama specific: accumulate full content to check for function calls at the end
# Some Ollama models output the function call as JSON in the text content
ollama_full_content = ""
is_ollama = False
model_str = str(self.model).lower()
is_ollama = self.is_ollama or "ollama" in model_str or ":" in model_str or "qwen" in model_str
# Add visual separation before agent output
if streaming_context and should_show_rich_stream:
# If we're using rich context, we'll add separation through that
pass
else:
# Removed clear visual separator to avoid blank lines during streaming
pass
try:
async for chunk in stream:
# Check if we've been interrupted
if stream_interrupted:
break
if not state.started:
state.started = True
yield ResponseCreatedEvent(
response=response,
type="response.created",
)
# The usage is only available in the last chunk
if hasattr(chunk, 'usage'):
usage = chunk.usage
# For Ollama/LiteLLM streams that don't have usage attribute
else:
usage = None
# Handle different stream chunk formats
if hasattr(chunk, 'choices') and chunk.choices:
choices = chunk.choices
elif hasattr(chunk, 'delta') and chunk.delta:
# Some providers might return delta directly
choices = [{"delta": chunk.delta}]
elif isinstance(chunk, dict) and 'choices' in chunk:
choices = chunk['choices']
# Special handling for Qwen/Ollama chunks
elif isinstance(chunk, dict) and ('content' in chunk or 'function_call' in chunk):
# Qwen direct delta format - convert to standard
choices = [{"delta": chunk}]
else:
# Skip chunks that don't contain choice data
continue
if not choices or len(choices) == 0:
continue
# Get the delta content
delta = None
if hasattr(choices[0], 'delta'):
delta = choices[0].delta
elif isinstance(choices[0], dict) and 'delta' in choices[0]:
delta = choices[0]['delta']
if not delta:
continue
# Handle Claude reasoning content first (before regular content)
reasoning_content = None
# Check for Claude reasoning in different possible formats
if hasattr(delta, 'reasoning_content') and delta.reasoning_content is not None:
reasoning_content = delta.reasoning_content
elif isinstance(delta, dict) and 'reasoning_content' in delta and delta['reasoning_content'] is not None:
reasoning_content = delta['reasoning_content']
# Also check for thinking_blocks structure (Claude 4 format)
thinking_blocks = None
if hasattr(delta, 'thinking_blocks') and delta.thinking_blocks is not None:
thinking_blocks = delta.thinking_blocks
elif isinstance(delta, dict) and 'thinking_blocks' in delta and delta['thinking_blocks'] is not None:
thinking_blocks = delta['thinking_blocks']
# Extract reasoning content from thinking blocks if available
if thinking_blocks and not reasoning_content:
for block in thinking_blocks:
if isinstance(block, dict) and block.get('type') == 'thinking':
reasoning_content = block.get('thinking', '')
break
elif isinstance(block, dict) and block.get('type') == 'text' and 'thinking' in str(block):
# Sometimes thinking content comes as text blocks
reasoning_content = block.get('text', '')
break
# Check for direct thinking field (some Claude models)
if not reasoning_content:
if hasattr(delta, 'thinking') and delta.thinking is not None:
reasoning_content = delta.thinking
elif isinstance(delta, dict) and 'thinking' in delta and delta['thinking'] is not None:
reasoning_content = delta['thinking']
# Update thinking display if we have reasoning content
if reasoning_content:
if thinking_context:
# Streaming mode: Update the rich thinking display
from cai.util import update_claude_thinking_content
update_claude_thinking_content(thinking_context, reasoning_content)
else:
# Non-streaming mode: Use simple text output
from cai.util import print_claude_reasoning_simple, detect_claude_thinking_in_stream
# Check if model supports reasoning (Claude or DeepSeek)
model_str_lower = str(self.model).lower()
if detect_claude_thinking_in_stream(str(self.model)) or "deepseek" in model_str_lower:
print_claude_reasoning_simple(reasoning_content, self.agent_name, str(self.model))
# Handle text
content = None
if hasattr(delta, 'content') and delta.content is not None:
content = delta.content
elif isinstance(delta, dict) and 'content' in delta and delta['content'] is not None:
content = delta['content']
if content:
# IMPORTANT: If we have content and thinking_context is active,
# it means thinking is complete and normal content is starting
# Close the thinking display automatically
if thinking_context:
from cai.util import finish_claude_thinking_display
finish_claude_thinking_display(thinking_context)
thinking_context = None # Clear the context
# For Ollama, we need to accumulate the full content to check for function calls
if is_ollama:
ollama_full_content += content
# Add to the streaming text buffer
streaming_text_buffer += content
# Update streaming display if enabled - ALWAYS respect CAI_STREAM setting
# Both thinking and regular content should stream if streaming is enabled
if streaming_context:
# Calculate cost for current interaction
current_cost = calculate_model_cost(str(self.model), estimated_input_tokens, estimated_output_tokens)
# Check price limit only for paid models
if current_cost > 0 and hasattr(COST_TRACKER, "check_price_limit") and estimated_output_tokens % 50 == 0:
try:
COST_TRACKER.check_price_limit(current_cost)
except Exception as e:
# Ensure streaming context is cleaned up
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
except Exception:
pass
# Stop timers and re-raise the exception
stop_active_timer()
start_idle_timer()
raise
# Update session total cost for real-time display
# This is a temporary estimate during streaming that will be properly updated at the end
estimated_session_total = getattr(COST_TRACKER, 'session_total_cost', 0.0)
# For free models, don't add to the total cost
display_total_cost = estimated_session_total
if current_cost > 0:
display_total_cost += current_cost
# Create token stats with both current interaction cost and updated total cost
token_stats = {
'input_tokens': estimated_input_tokens,
'output_tokens': estimated_output_tokens,
'cost': current_cost,
'total_cost': display_total_cost
}
update_agent_streaming_content(streaming_context, content, token_stats)
# More accurate token counting for text content
output_text += content
token_count, _ = count_tokens_with_tiktoken(output_text)
estimated_output_tokens = token_count
# Periodically check price limit during streaming
# This allows early termination if price limit is reached mid-stream
if estimated_output_tokens > 0 and estimated_output_tokens % 50 == 0: # Check every ~50 tokens
# Calculate current estimated cost
current_estimated_cost = calculate_model_cost(
str(self.model), estimated_input_tokens, estimated_output_tokens)
# Check price limit only for paid models
if current_estimated_cost > 0 and hasattr(COST_TRACKER, "check_price_limit"):
try:
COST_TRACKER.check_price_limit(current_estimated_cost)
except Exception as e:
# Ensure streaming context is cleaned up
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
except Exception:
pass
# Stop timers and re-raise the exception
stop_active_timer()
start_idle_timer()
raise
# Update the COST_TRACKER with the running cost for accurate display
if hasattr(COST_TRACKER, "interaction_cost"):
COST_TRACKER.interaction_cost = current_estimated_cost
# Also update streaming context if available for live display
if streaming_context:
# For free models, don't add to the session total
if current_estimated_cost == 0:
session_total = getattr(COST_TRACKER, 'session_total_cost', 0.0)
else:
session_total = getattr(COST_TRACKER, 'session_total_cost', 0.0) + current_estimated_cost
updated_token_stats = {
'input_tokens': estimated_input_tokens,
'output_tokens': estimated_output_tokens,
'cost': current_estimated_cost,
'total_cost': session_total
}
update_agent_streaming_content(streaming_context, "", updated_token_stats)
if not state.text_content_index_and_output:
# Initialize a content tracker for streaming text
state.text_content_index_and_output = (
0 if not state.refusal_content_index_and_output else 1,
ResponseOutputText(
text="",
type="output_text",
annotations=[],
),
)
# Start a new assistant message stream
assistant_item = ResponseOutputMessage(
id=FAKE_RESPONSES_ID,
content=[],
role="assistant",
type="message",
status="in_progress",
)
# Notify consumers of the start of a new output message + first content part
yield ResponseOutputItemAddedEvent(
item=assistant_item,
output_index=0,
type="response.output_item.added",
)
yield ResponseContentPartAddedEvent(
content_index=state.text_content_index_and_output[0],
item_id=FAKE_RESPONSES_ID,
output_index=0,
part=ResponseOutputText(
text="",
type="output_text",
annotations=[],
),
type="response.content_part.added",
)
# Emit the delta for this segment of content
yield ResponseTextDeltaEvent(
content_index=state.text_content_index_and_output[0],
delta=content,
item_id=FAKE_RESPONSES_ID,
output_index=0,
type="response.output_text.delta",
)
# Accumulate the text into the response part
state.text_content_index_and_output[1].text += content
# Handle refusals (model declines to answer)
refusal_content = None
if hasattr(delta, 'refusal') and delta.refusal:
refusal_content = delta.refusal
elif isinstance(delta, dict) and 'refusal' in delta and delta['refusal']:
refusal_content = delta['refusal']
if refusal_content:
if not state.refusal_content_index_and_output:
# Initialize a content tracker for streaming refusal text
state.refusal_content_index_and_output = (
0 if not state.text_content_index_and_output else 1,
ResponseOutputRefusal(refusal="", type="refusal"),
)
# Start a new assistant message if one doesn't exist yet (in-progress)
assistant_item = ResponseOutputMessage(
id=FAKE_RESPONSES_ID,
content=[],
role="assistant",
type="message",
status="in_progress",
)
# Notify downstream that assistant message + first content part are starting
yield ResponseOutputItemAddedEvent(
item=assistant_item,
output_index=0,
type="response.output_item.added",
)
yield ResponseContentPartAddedEvent(
content_index=state.refusal_content_index_and_output[0],
item_id=FAKE_RESPONSES_ID,
output_index=0,
part=ResponseOutputText(
text="",
type="output_text",
annotations=[],
),
type="response.content_part.added",
)
# Emit the delta for this segment of refusal
yield ResponseRefusalDeltaEvent(
content_index=state.refusal_content_index_and_output[0],
delta=refusal_content,
item_id=FAKE_RESPONSES_ID,
output_index=0,
type="response.refusal.delta",
)
# Accumulate the refusal string in the output part
state.refusal_content_index_and_output[1].refusal += refusal_content
# Handle tool calls
# Because we don't know the name of the function until the end of the stream, we'll
# save everything and yield events at the end
tool_calls = self._detect_and_format_function_calls(delta)
if tool_calls:
for tc_delta in tool_calls:
tc_index = tc_delta.index if hasattr(tc_delta, 'index') else tc_delta.get('index', 0)
if tc_index not in state.function_calls:
state.function_calls[tc_index] = ResponseFunctionToolCall(
id=FAKE_RESPONSES_ID,
arguments="",
name="",
type="function_call",
call_id="",
)
tc_function = None
if hasattr(tc_delta, 'function'):
tc_function = tc_delta.function
elif isinstance(tc_delta, dict) and 'function' in tc_delta:
tc_function = tc_delta['function']
if tc_function:
# Handle both object and dict formats
args = ""
if hasattr(tc_function, 'arguments'):
args = tc_function.arguments or ""
elif isinstance(tc_function, dict) and 'arguments' in tc_function:
args = tc_function.get('arguments', "") or ""
name = ""
if hasattr(tc_function, 'name'):
name = tc_function.name or ""
elif isinstance(tc_function, dict) and 'name' in tc_function:
name = tc_function.get('name', "") or ""
state.function_calls[tc_index].arguments += args
state.function_calls[tc_index].name += name
# Handle call_id in both formats
call_id = ""
if hasattr(tc_delta, 'id'):
call_id = tc_delta.id or ""
elif isinstance(tc_delta, dict) and 'id' in tc_delta:
call_id = tc_delta.get('id', "") or ""
else:
# For Qwen models, generate a predictable ID if none is provided
if state.function_calls[tc_index].name:
# Generate a stable ID from the function name and arguments
call_id = f"call_{hashlib.md5(state.function_calls[tc_index].name.encode()).hexdigest()[:8]}"
state.function_calls[tc_index].call_id += call_id
# --- Accumulate tool call for message_history ---
# Only add if not already present (avoid duplicates in streaming)
tool_call_msg = {
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": state.function_calls[tc_index].call_id,
"type": "function",
"function": {
"name": state.function_calls[tc_index].name,
"arguments": state.function_calls[tc_index].arguments
}
}
]
}
# Only add if not already in streamed_tool_calls
if tool_call_msg not in streamed_tool_calls:
streamed_tool_calls.append(tool_call_msg)
add_to_message_history(tool_call_msg)
# NEW: Display tool call immediately when detected in streaming mode
# But only if it has complete arguments and name
if (state.function_calls[tc_index].name and
state.function_calls[tc_index].arguments and
state.function_calls[tc_index].call_id):
# First, finish any existing streaming context if it exists
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
streaming_context = None
except Exception:
pass
# Create a message-like object for displaying the function call
tool_msg = type('ToolCallStreamDisplay', (), {
'content': None,
'tool_calls': [
type('ToolCallDetail', (), {
'function': type('FunctionDetail', (), {
'name': state.function_calls[tc_index].name,
'arguments': state.function_calls[tc_index].arguments
}),
'id': state.function_calls[tc_index].call_id,
'type': 'function'
})
]
})
# Display the tool call during streaming
cli_print_agent_messages(
agent_name=getattr(self, 'agent_name', 'Agent'),
message=tool_msg,
counter=getattr(self, 'interaction_counter', 0),
model=str(self.model),
debug=False,
interaction_input_tokens=estimated_input_tokens,
interaction_output_tokens=estimated_output_tokens,
interaction_reasoning_tokens=0, # Not available during streaming yet
total_input_tokens=getattr(self, 'total_input_tokens', 0) + estimated_input_tokens,
total_output_tokens=getattr(self, 'total_output_tokens', 0) + estimated_output_tokens,
total_reasoning_tokens=getattr(self, 'total_reasoning_tokens', 0),
interaction_cost=None,
total_cost=None,
tool_output=None, # Will be shown once tool is executed
suppress_empty=True # Prevent empty panels
)
# Set flag to suppress final output to avoid duplication
self.suppress_final_output = True
except KeyboardInterrupt:
# Handle interruption during streaming
stream_interrupted = True
print("\n[Streaming interrupted by user]", file=sys.stderr)
# Let the exception propagate after cleanup
raise
except Exception as e:
# Handle other exceptions during streaming
logger.error(f"Error during streaming: {e}")
raise
# Special handling for Ollama - check if accumulated text contains a valid function call
if is_ollama and ollama_full_content and len(state.function_calls) == 0:
# Look for JSON object that might be a function call
try:
# Try to extract a JSON object from the content
json_start = ollama_full_content.find('{')
json_end = ollama_full_content.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
json_str = ollama_full_content[json_start:json_end]
# Try to parse the JSON
parsed = json.loads(json_str)
# Check if it looks like a function call
if ('name' in parsed and 'arguments' in parsed):
logger.debug(f"Found valid function call in Ollama output: {json_str}")
# Create a tool call ID
tool_call_id = f"call_{hashlib.md5((parsed['name'] + str(time.time())).encode()).hexdigest()[:8]}"
# Ensure arguments is a valid JSON string
arguments_str = ""
if isinstance(parsed['arguments'], dict):
# Remove 'ctf' field if it exists
if 'ctf' in parsed['arguments']:
del parsed['arguments']['ctf']
arguments_str = json.dumps(parsed['arguments'])
elif isinstance(parsed['arguments'], str):
# If it's already a string, check if it's valid JSON
try:
# Try parsing to validate and remove 'ctf' if present
args_dict = json.loads(parsed['arguments'])
if isinstance(args_dict, dict) and 'ctf' in args_dict:
del args_dict['ctf']
arguments_str = json.dumps(args_dict)
except:
# If not valid JSON, encode it as a JSON string
arguments_str = json.dumps(parsed['arguments'])
else:
# For any other type, convert to string and then JSON
arguments_str = json.dumps(str(parsed['arguments']))
# Add it to our function_calls state
state.function_calls[0] = ResponseFunctionToolCall(
id=FAKE_RESPONSES_ID,
arguments=arguments_str,
name=parsed['name'],
type="function_call",
call_id=tool_call_id[:40],
)
# Display the tool call in CLI
try:
# First, finish any existing streaming context if it exists
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
streaming_context = None
except Exception:
pass
# Create a message-like object to display the function call
tool_msg = type('ToolCallWrapper', (), {
'content': None,
'tool_calls': [
type('ToolCallDetail', (), {
'function': type('FunctionDetail', (), {
'name': parsed['name'],
'arguments': arguments_str
}),
'id': tool_call_id[:40],
'type': 'function'
})
]
})
# Print the tool call using the CLI utility
cli_print_agent_messages(
agent_name=getattr(self, 'agent_name', 'Agent'),
message=tool_msg,
counter=getattr(self, 'interaction_counter', 0),
model=str(self.model),
debug=False,
interaction_input_tokens=estimated_input_tokens,
interaction_output_tokens=estimated_output_tokens,
interaction_reasoning_tokens=0, # Not available for Ollama
total_input_tokens=getattr(self, 'total_input_tokens', 0) + estimated_input_tokens,
total_output_tokens=getattr(self, 'total_output_tokens', 0) + estimated_output_tokens,
total_reasoning_tokens=getattr(self, 'total_reasoning_tokens', 0),
interaction_cost=None,
total_cost=None,
tool_output=None, # Will be shown once the tool is executed
suppress_empty=True # Suppress empty panels during streaming
)
# Set flag to suppress final output to avoid duplication
self.suppress_final_output = True
except Exception as e:
logger.error(f"Error displaying tool call in CLI: {e}")
# Add to message history
tool_call_msg = {
"role": "assistant",
"content": None,
"tool_calls": [
{
"id": tool_call_id,
"type": "function",
"function": {
"name": parsed['name'],
"arguments": arguments_str
}
}
]
}
streamed_tool_calls.append(tool_call_msg)
add_to_message_history(tool_call_msg)
logger.debug(f"Added function call: {parsed['name']} with args: {arguments_str}")
except Exception as e:
pass
function_call_starting_index = 0
if state.text_content_index_and_output:
function_call_starting_index += 1
# Send end event for this content part
yield ResponseContentPartDoneEvent(
content_index=state.text_content_index_and_output[0],
item_id=FAKE_RESPONSES_ID,
output_index=0,
part=state.text_content_index_and_output[1],
type="response.content_part.done",
)
if state.refusal_content_index_and_output:
function_call_starting_index += 1
# Send end event for this content part
yield ResponseContentPartDoneEvent(
content_index=state.refusal_content_index_and_output[0],
item_id=FAKE_RESPONSES_ID,
output_index=0,
part=state.refusal_content_index_and_output[1],
type="response.content_part.done",
)
# Actually send events for the function calls
for function_call in state.function_calls.values():
# First, a ResponseOutputItemAdded for the function call
yield ResponseOutputItemAddedEvent(
item=ResponseFunctionToolCall(
id=FAKE_RESPONSES_ID,
call_id=function_call.call_id[:40],
arguments=function_call.arguments,
name=function_call.name,
type="function_call",
),
output_index=function_call_starting_index,
type="response.output_item.added",
)
# Then, yield the args
yield ResponseFunctionCallArgumentsDeltaEvent(
delta=function_call.arguments,
item_id=FAKE_RESPONSES_ID,
output_index=function_call_starting_index,
type="response.function_call_arguments.delta",
)
# Finally, the ResponseOutputItemDone
yield ResponseOutputItemDoneEvent(
item=ResponseFunctionToolCall(
id=FAKE_RESPONSES_ID,
call_id=function_call.call_id[:40],
arguments=function_call.arguments,
name=function_call.name,
type="function_call",
),
output_index=function_call_starting_index,
type="response.output_item.done",
)
# Finally, send the Response completed event
outputs: list[ResponseOutputItem] = []
if state.text_content_index_and_output or state.refusal_content_index_and_output:
assistant_msg = ResponseOutputMessage(
id=FAKE_RESPONSES_ID,
content=[],
role="assistant",
type="message",
status="completed",
)
if state.text_content_index_and_output:
assistant_msg.content.append(state.text_content_index_and_output[1])
if state.refusal_content_index_and_output:
assistant_msg.content.append(state.refusal_content_index_and_output[1])
outputs.append(assistant_msg)
# send a ResponseOutputItemDone for the assistant message
yield ResponseOutputItemDoneEvent(
item=assistant_msg,
output_index=0,
type="response.output_item.done",
)
for function_call in state.function_calls.values():
outputs.append(function_call)
final_response = response.model_copy()
final_response.output = outputs
# Get final token counts using consistent method
input_tokens = estimated_input_tokens
output_tokens = estimated_output_tokens
# Use API token counts if available and reasonable
if usage and hasattr(usage, 'prompt_tokens') and usage.prompt_tokens > 0:
input_tokens = usage.prompt_tokens
if usage and hasattr(usage, 'completion_tokens') and usage.completion_tokens > 0:
output_tokens = usage.completion_tokens
# Create a proper usage object with our token counts
final_response.usage = CustomResponseUsage(
input_tokens=input_tokens,
output_tokens=output_tokens,
total_tokens=input_tokens + output_tokens,
output_tokens_details=OutputTokensDetails(
reasoning_tokens=usage.completion_tokens_details.reasoning_tokens
if usage and hasattr(usage, 'completion_tokens_details')
and usage.completion_tokens_details
and hasattr(usage.completion_tokens_details, 'reasoning_tokens')
and usage.completion_tokens_details.reasoning_tokens
else 0
),
input_tokens_details={
"prompt_tokens": input_tokens,
"cached_tokens": usage.prompt_tokens_details.cached_tokens
if usage and hasattr(usage, 'prompt_tokens_details')
and usage.prompt_tokens_details
and hasattr(usage.prompt_tokens_details, 'cached_tokens')
and usage.prompt_tokens_details.cached_tokens
else 0
},
)
yield ResponseCompletedEvent(
response=final_response,
type="response.completed",
)
# Update token totals for CLI display
if final_response.usage:
# Always update the total counters with the best available counts
self.total_input_tokens += final_response.usage.input_tokens
self.total_output_tokens += final_response.usage.output_tokens
if (final_response.usage.output_tokens_details and
hasattr(final_response.usage.output_tokens_details, 'reasoning_tokens')):
self.total_reasoning_tokens += final_response.usage.output_tokens_details.reasoning_tokens
# Prepare final statistics for display
interaction_input = final_response.usage.input_tokens if final_response.usage else 0
interaction_output = final_response.usage.output_tokens if final_response.usage else 0
total_input = getattr(self, 'total_input_tokens', 0)
total_output = getattr(self, 'total_output_tokens', 0)
# Calculate costs for this model
model_name = str(self.model)
interaction_cost = calculate_model_cost(model_name, interaction_input, interaction_output)
total_cost = calculate_model_cost(model_name, total_input, total_output)
# If interaction cost is zero, this is a free model
if interaction_cost == 0:
# For free models, keep existing total and ensure cost tracking system knows it's free
total_cost = getattr(COST_TRACKER, 'session_total_cost', 0.0)
if hasattr(COST_TRACKER, "reset_cost_for_local_model"):
COST_TRACKER.reset_cost_for_local_model(model_name)
# Explicit conversion to float with fallback to ensure they're never None or 0
interaction_cost = float(interaction_cost if interaction_cost is not None else 0.0)
total_cost = float(total_cost if total_cost is not None else 0.0)
# Update the global COST_TRACKER with the cost of this specific interaction
# and check price limit for streaming mode (similar to non-streaming mode)
if interaction_cost > 0.0:
# Check price limit before adding the new cost
if hasattr(COST_TRACKER, "check_price_limit"):
try:
COST_TRACKER.check_price_limit(interaction_cost)
except Exception as e:
# Ensure streaming context is cleaned up
if streaming_context:
try:
finish_agent_streaming(streaming_context, None)
except Exception:
pass
# Stop timers and re-raise the exception
stop_active_timer()
start_idle_timer()
raise
# Now add the cost to session total
if hasattr(COST_TRACKER, "update_session_cost"):
COST_TRACKER.update_session_cost(interaction_cost)
elif hasattr(COST_TRACKER, "add_interaction_cost"):
COST_TRACKER.add_interaction_cost(interaction_cost)
# Ensure the total cost includes the session total for display
if hasattr(COST_TRACKER, "session_total_cost"):
total_cost = COST_TRACKER.session_total_cost
# Store the total cost for future recording
self.total_cost = total_cost
# Create final stats with explicit type conversion for all values
final_stats = {
"interaction_input_tokens": int(interaction_input),
"interaction_output_tokens": int(interaction_output),
"interaction_reasoning_tokens": int(
final_response.usage.output_tokens_details.reasoning_tokens
if final_response.usage and final_response.usage.output_tokens_details
and hasattr(final_response.usage.output_tokens_details, 'reasoning_tokens')
else 0
),
"total_input_tokens": int(total_input),
"total_output_tokens": int(total_output),
"total_reasoning_tokens": int(getattr(self, 'total_reasoning_tokens', 0)),
"interaction_cost": float(interaction_cost),
"total_cost": float(total_cost),
}
# At the end of streaming, finish the streaming context if we were using it
if streaming_context:
# Create a direct copy of the costs to ensure they remain as floats
direct_stats = final_stats.copy()
direct_stats["interaction_cost"] = float(interaction_cost)
direct_stats["total_cost"] = float(total_cost)
# Use the direct copy with guaranteed float costs
finish_agent_streaming(streaming_context, direct_stats)
streaming_context = None
# Removed extra newline after streaming completes to avoid blank lines
pass
# Finish Claude thinking display if it was active
if thinking_context:
from cai.util import finish_claude_thinking_display
finish_claude_thinking_display(thinking_context)
# Note: Content is now displayed during streaming, no need to show it again here
if tracing.include_data():
span_generation.span_data.output = [final_response.model_dump()]
span_generation.span_data.usage = {
"input_tokens": input_tokens,
"output_tokens": output_tokens,
}
# --- Add assistant tool call(s) to message_history at the end of streaming ---
for tool_call_msg in streamed_tool_calls:
add_to_message_history(tool_call_msg)
# Log the assistant tool call message if any tool calls were collected
if streamed_tool_calls:
tool_calls_list = []
for tool_call_msg in streamed_tool_calls:
for tool_call in tool_call_msg.get("tool_calls", []):
tool_calls_list.append(tool_call)
self.logger.log_assistant_message(None, tool_calls_list)
# Always log text content if it exists, regardless of suppress_final_output
# The suppress_final_output flag is only for preventing duplicate tool call display
if state.text_content_index_and_output and state.text_content_index_and_output[1].text:
asst_msg = {
"role": "assistant",
"content": state.text_content_index_and_output[1].text
}
add_to_message_history(asst_msg)
# Log the assistant message
self.logger.log_assistant_message(state.text_content_index_and_output[1].text)
# Reset the suppress flag for future requests
self.suppress_final_output = False
# Log the complete response
self.logger.rec_training_data(
{
"model": str(self.model),
"messages": converted_messages,
"stream": True,
"tools": [t.params_json_schema for t in tools] if tools else [],
"tool_choice": model_settings.tool_choice
},
final_response,
self.total_cost
)
# Stop active timer and start idle timer when streaming is complete
stop_active_timer()
start_idle_timer()
except KeyboardInterrupt:
# Handle keyboard interruption specifically
stream_interrupted = True
# Make sure to clean up and re-raise
raise
except Exception as e:
# Handle other exceptions
logger.error(f"Error in stream_response: {e}")
raise
finally:
# Always clean up resources
# This block executes whether the try block succeeds, fails, or is interrupted
# Clean up streaming context
if streaming_context:
try:
# Check if we need to force stop the streaming panel
if streaming_context.get("is_started", False) and streaming_context.get("live"):
streaming_context["live"].stop()
# Remove from active streaming contexts
if hasattr(create_agent_streaming_context, "_active_streaming"):
for key, value in list(create_agent_streaming_context._active_streaming.items()):
if value is streaming_context:
del create_agent_streaming_context._active_streaming[key]
break
except Exception as cleanup_error:
logger.debug(f"Error cleaning up streaming context: {cleanup_error}")
# Clean up thinking context
if thinking_context:
try:
# Force finish the thinking display
from cai.util import finish_claude_thinking_display
finish_claude_thinking_display(thinking_context)
except Exception as cleanup_error:
logger.debug(f"Error cleaning up thinking context: {cleanup_error}")
# Clean up any live streaming panels
if hasattr(cli_print_tool_output, '_streaming_sessions'):
# Find any sessions related to this stream
for call_id in list(cli_print_tool_output._streaming_sessions.keys()):
if call_id in _LIVE_STREAMING_PANELS:
try:
live = _LIVE_STREAMING_PANELS[call_id]
live.stop()
del _LIVE_STREAMING_PANELS[call_id]
except Exception:
pass
# Stop active timer and start idle timer
try:
stop_active_timer()
start_idle_timer()
except Exception:
pass
# If the stream was interrupted, add a visual indicator
if stream_interrupted:
try:
print("\n[Stream interrupted - Cleanup completed]", file=sys.stderr)
except Exception:
pass
@overload
async def _fetch_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
span: Span[GenerationSpanData],
tracing: ModelTracing,
stream: Literal[True],
) -> tuple[Response, AsyncStream[ChatCompletionChunk]]: ...
@overload
async def _fetch_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
span: Span[GenerationSpanData],
tracing: ModelTracing,
stream: Literal[False],
) -> ChatCompletion: ...
async def _fetch_response(
self,
system_instructions: str | None,
input: str | list[TResponseInputItem],
model_settings: ModelSettings,
tools: list[Tool],
output_schema: AgentOutputSchema | None,
handoffs: list[Handoff],
span: Span[GenerationSpanData],
tracing: ModelTracing,
stream: bool = False,
) -> ChatCompletion | tuple[Response, AsyncStream[ChatCompletionChunk]]:
# start by re-fetching self.is_ollama
self.is_ollama = os.getenv('OLLAMA') is not None and os.getenv('OLLAMA').lower() == 'true'
converted_messages = _Converter.items_to_messages(input)
if system_instructions:
converted_messages.insert(
0,
{
"content": system_instructions,
"role": "system",
},
)
# Add support for prompt caching for claude (not automatically applied)
# Gemini supports it too
# https://www.anthropic.com/news/token-saving-updates
# Maximize cache efficiency by using up to 4 cache_control blocks
if ((str(self.model).startswith("claude") or
"gemini" in str(self.model)) and
len(converted_messages) > 0):
# Strategy: Cache the most valuable messages for maximum savings
# 1. System message (always first priority)
# 2. Long user messages (high token count)
# 3. Assistant messages with tool calls (complex context)
# 4. Recent context (last message)
cache_candidates = []
# Always cache system message if present
for i, msg in enumerate(converted_messages):
if msg.get("role") == "system":
cache_candidates.append((i, len(str(msg.get("content", ""))), "system"))
break
# Find long user messages and assistant messages with tool calls
for i, msg in enumerate(converted_messages):
content_len = len(str(msg.get("content", "")))
role = msg.get("role")
if role == "user" and content_len > 500: # Long user messages
cache_candidates.append((i, content_len, "user"))
elif role == "assistant" and msg.get("tool_calls"): # Tool calls
cache_candidates.append((i, content_len + 200, "assistant_tools")) # Bonus for tool calls
# Always consider the last message for recent context
if len(converted_messages) > 1:
last_idx = len(converted_messages) - 1
last_msg = converted_messages[last_idx]
last_content_len = len(str(last_msg.get("content", "")))
cache_candidates.append((last_idx, last_content_len, "recent"))
# Sort by value (content length) and select top 4 unique indices
cache_candidates.sort(key=lambda x: x[1], reverse=True)
selected_indices = []
for idx, _, msg_type in cache_candidates:
if idx not in selected_indices:
selected_indices.append(idx)
if len(selected_indices) >= 4: # Max 4 cache blocks
break
# Apply cache_control to selected messages
for idx in selected_indices:
msg_copy = converted_messages[idx].copy()
msg_copy["cache_control"] = {"type": "ephemeral"}
converted_messages[idx] = msg_copy
if tracing.include_data():
span.span_data.input = converted_messages
# IMPORTANT: Always sanitize the message list to prevent tool call errors
# This is critical to fix common errors with tool/assistant sequences
try:
from cai.util import fix_message_list
prev_length = len(converted_messages)
converted_messages = fix_message_list(converted_messages)
new_length = len(converted_messages)
# Log if the message list was changed significantly
if new_length != prev_length:
logger.debug(f"Message list was fixed: {prev_length} -> {new_length} messages")
except Exception as e:
pass
parallel_tool_calls = (
True if model_settings.parallel_tool_calls and tools and len(tools) > 0 else NOT_GIVEN
)
tool_choice = _Converter.convert_tool_choice(model_settings.tool_choice)
response_format = _Converter.convert_response_format(output_schema)
converted_tools = [ToolConverter.to_openai(tool) for tool in tools] if tools else []
for handoff in handoffs:
converted_tools.append(ToolConverter.convert_handoff_tool(handoff))
if _debug.DONT_LOG_MODEL_DATA:
logger.debug("Calling LLM")
else:
logger.debug(
f"{json.dumps(converted_messages, indent=2)}\n"
f"Tools:\n{json.dumps(converted_tools, indent=2)}\n"
f"Stream: {stream}\n"
f"Tool choice: {tool_choice}\n"
f"Response format: {response_format}\n"
f"Using OLLAMA: {self.is_ollama}\n"
)
# Use NOT_GIVEN for store if not explicitly set to avoid compatibility issues
store = self._non_null_or_not_given(model_settings.store)
# Check if we should use the agent's model instead of self.model
# This prioritizes the model from Agent when available
agent_model = None
if hasattr(model_settings, 'agent_model') and model_settings.agent_model:
agent_model = model_settings.agent_model
logger.debug(f"Using agent model: {agent_model} instead of {self.model}")
# Prepare kwargs for the API call
kwargs = {
"model": agent_model if agent_model else self.model,
"messages": converted_messages,
"tools": converted_tools or NOT_GIVEN,
"temperature": self._non_null_or_not_given(model_settings.temperature),
"top_p": self._non_null_or_not_given(model_settings.top_p),
"frequency_penalty": self._non_null_or_not_given(model_settings.frequency_penalty),
"presence_penalty": self._non_null_or_not_given(model_settings.presence_penalty),
"max_tokens": self._non_null_or_not_given(model_settings.max_tokens),
"tool_choice": tool_choice,
"response_format": response_format,
"parallel_tool_calls": parallel_tool_calls,
"stream": stream,
"stream_options": {"include_usage": True} if stream else NOT_GIVEN,
"store": store,
"extra_headers": _HEADERS,
}
# Determine provider based on model string
model_str = str(kwargs["model"]).lower()
if "alias" in model_str:
kwargs["api_base"] = "http://api.aliasrobotics.com:666/"
kwargs["custom_llm_provider"] = "openai"
kwargs["api_key"] = os.getenv("ALIAS_API_KEY", "sk-alias-1234567890")
elif "/" in model_str:
# Handle provider/model format
provider = model_str.split("/")[0]
# Apply provider-specific configurations
if provider == "deepseek":
litellm.drop_params = True
kwargs.pop("parallel_tool_calls", None)
kwargs.pop("store", None) # DeepSeek doesn't support store parameter
# Remove tool_choice if no tools are specified
if not converted_tools:
kwargs.pop("tool_choice", None)
# Add reasoning support for DeepSeek
# DeepSeek supports reasoning_effort parameter
if hasattr(model_settings, "reasoning_effort") and model_settings.reasoning_effort:
kwargs["reasoning_effort"] = model_settings.reasoning_effort
else:
# Default to "low" reasoning effort if model supports it
kwargs["reasoning_effort"] = "low"
elif provider == "claude" or "claude" in model_str:
litellm.drop_params = True
kwargs.pop("store", None)
kwargs.pop("parallel_tool_calls", None) # Claude doesn't support parallel tool calls
# Remove tool_choice if no tools are specified
if not converted_tools:
kwargs.pop("tool_choice", None)
# Add extended reasoning support for Claude models
# Supports Claude 3.7, Claude 4, and any model with "thinking" in the name
has_reasoning_capability = (
"thinking" in model_str or
# Claude 4 models support reasoning
"-4-" in model_str or
"sonnet-4" in model_str or
"haiku-4" in model_str or
"opus-4" in model_str or
"3.7" in model_str
)
if has_reasoning_capability:
# Clean the model name by removing "thinking" before sending to API
clean_model = kwargs["model"]
if isinstance(clean_model, str) and "thinking" in clean_model.lower():
# Remove "thinking" and clean up any extra spaces/separators
clean_model = re.sub(r'[_-]?thinking[_-]?', '', clean_model, flags=re.IGNORECASE)
clean_model = re.sub(r'[-_]{2,}', '-', clean_model) # Clean up multiple separators
clean_model = clean_model.strip('-_') # Clean up leading/trailing separators
kwargs["model"] = clean_model
# Check if message history is compatible with reasoning
messages = kwargs.get("messages", [])
is_compatible = _check_reasoning_compatibility(messages)
if is_compatible:
kwargs["reasoning_effort"] = "low" # Use reasoning_effort instead of thinking
elif provider == "gemini":
kwargs.pop("parallel_tool_calls", None)
# Add any specific gemini settings if needed
else:
# Handle models without provider prefix
if "claude" in model_str or "anthropic" in model_str:
litellm.drop_params = True
# Remove parameters that Anthropic doesn't support
kwargs.pop("store", None)
kwargs.pop("parallel_tool_calls", None)
# Remove tool_choice if no tools are specified
if not converted_tools:
kwargs.pop("tool_choice", None)
# Add extended reasoning support for Claude models
# Supports Claude 3.7, Claude 4, and any model with "thinking" in the name
has_reasoning_capability = "thinking" in model_str
if has_reasoning_capability:
# Clean the model name by removing "thinking" before sending to API
clean_model = kwargs["model"]
if isinstance(clean_model, str) and "thinking" in clean_model.lower():
# Remove "thinking" and clean up any extra spaces/separators
clean_model = re.sub(r'[_-]?thinking[_-]?', '', clean_model, flags=re.IGNORECASE)
clean_model = re.sub(r'[-_]{2,}', '-', clean_model) # Clean up multiple separators
clean_model = clean_model.strip('-_') # Clean up leading/trailing separators
kwargs["model"] = clean_model
# Check if message history is compatible with reasoning
messages = kwargs.get("messages", [])
is_compatible = _check_reasoning_compatibility(messages)
if is_compatible:
kwargs["reasoning_effort"] = "low" # Use reasoning_effort instead of thinking
elif "gemini" in model_str:
kwargs.pop("parallel_tool_calls", None)
elif "qwen" in model_str or ":" in model_str:
# Handle Ollama-served models with custom formats (e.g., qwen2.5:14b)
# These typically need the Ollama provider
litellm.drop_params = True
kwargs.pop("parallel_tool_calls", None)
kwargs.pop("store", None) # Ollama doesn't support store parameter
# These models may not support certain parameters
if not converted_tools:
kwargs.pop("tool_choice", None)
# Don't add custom_llm_provider here to avoid duplication with Ollama provider
if self.is_ollama:
# Clean kwargs for ollama to avoid parameter conflicts
for param in ["custom_llm_provider"]:
kwargs.pop(param, None)
elif any(x in model_str for x in ["o1", "o3", "o4"]):
# Handle OpenAI reasoning models (o1, o3, o4)
kwargs.pop("parallel_tool_calls", None)
# Add reasoning effort if provided
if hasattr(model_settings, "reasoning_effort"):
kwargs["reasoning_effort"] = model_settings.reasoning_effort
# Filter out NotGiven values to avoid JSON serialization issues
filtered_kwargs = {}
for key, value in kwargs.items():
if value is not NOT_GIVEN:
filtered_kwargs[key] = value
kwargs = filtered_kwargs
try:
if self.is_ollama:
return await self._fetch_response_litellm_ollama(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
else:
return await self._fetch_response_litellm_openai(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
except litellm.exceptions.BadRequestError as e:
error_msg = str(e)
# Handle Claude reasoning/thinking compatibility errors
if ("Expected `thinking` or `redacted_thinking`, but found `text`" in error_msg or
"When `thinking` is enabled, a final `assistant` message must start with a thinking block" in error_msg):
# Retry without reasoning_effort
retry_kwargs = kwargs.copy()
retry_kwargs.pop("reasoning_effort", None)
try:
if stream:
response = Response(
id=FAKE_RESPONSES_ID,
created_at=time.time(),
model=self.model,
object="response",
output=[],
tool_choice="auto" if tool_choice is None or tool_choice == NOT_GIVEN else cast(Literal["auto", "required", "none"], tool_choice),
top_p=model_settings.top_p,
temperature=model_settings.temperature,
tools=[],
parallel_tool_calls=parallel_tool_calls or False,
)
stream_obj = await litellm.acompletion(**retry_kwargs)
return response, stream_obj
else:
ret = litellm.completion(**retry_kwargs)
return ret
except Exception as retry_e:
# If retry also fails, raise the original error
raise e
#print(color("BadRequestError encountered: " + str(e), fg="yellow"))
if "LLM Provider NOT provided" in str(e):
model_str = str(self.model).lower()
provider = None
is_qwen = "qwen" in model_str or ":" in model_str
# Special handling for Qwen models
if is_qwen:
try:
# Use the specialized Qwen approach first
return await self._fetch_response_litellm_ollama(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
except Exception as qwen_e:
print(qwen_e)
# If that fails, try our direct OpenAI approach
qwen_params = kwargs.copy()
qwen_params["api_base"] = get_ollama_api_base()
qwen_params["custom_llm_provider"] = "openai" # Use openai provider
# Make sure tools are passed
if "tools" in kwargs and kwargs["tools"]:
qwen_params["tools"] = kwargs["tools"]
if "tool_choice" in kwargs and kwargs["tool_choice"] is not NOT_GIVEN:
qwen_params["tool_choice"] = kwargs["tool_choice"]
try:
if stream:
# Streaming case
response = Response(
id=FAKE_RESPONSES_ID,
created_at=time.time(),
model=self.model,
object="response",
output=[],
tool_choice="auto" if tool_choice is None or tool_choice == NOT_GIVEN else cast(Literal["auto", "required", "none"], tool_choice),
top_p=model_settings.top_p,
temperature=model_settings.temperature,
tools=[],
parallel_tool_calls=parallel_tool_calls or False,
)
stream_obj = await litellm.acompletion(**qwen_params)
return response, stream_obj
else:
# Non-streaming case
ret = litellm.completion(**qwen_params)
return ret
except Exception as direct_e:
# All approaches failed, log and raise the original error
print(f"All Qwen approaches failed. Original error: {str(e)}, Direct error: {str(direct_e)}")
raise e
# Try to detect provider from model string
if "/" in model_str:
provider = model_str.split("/")[0]
if provider:
# Add provider-specific settings based on detected provider
provider_kwargs = kwargs.copy()
if provider == "deepseek":
provider_kwargs["custom_llm_provider"] = "deepseek"
provider_kwargs.pop("store", None) # DeepSeek doesn't support store parameter
provider_kwargs.pop("parallel_tool_calls", None) # DeepSeek doesn't support parallel tool calls
# Add reasoning support for DeepSeek
if hasattr(model_settings, "reasoning_effort") and model_settings.reasoning_effort:
provider_kwargs["reasoning_effort"] = model_settings.reasoning_effort
else:
# Default to "low" reasoning effort
provider_kwargs["reasoning_effort"] = "low"
elif provider == "claude" or "claude" in model_str:
provider_kwargs["custom_llm_provider"] = "anthropic"
provider_kwargs.pop("store", None) # Claude doesn't support store parameter
provider_kwargs.pop("parallel_tool_calls", None) # Claude doesn't support parallel tool calls
# Add extended reasoning support for Claude models
if "thinking" in model_str:
# Clean the model name by removing "thinking" before sending to API
clean_model = provider_kwargs["model"]
if isinstance(clean_model, str) and "thinking" in clean_model.lower():
# Remove "thinking" and clean up any extra spaces/separators
clean_model = re.sub(r'[_-]?thinking[_-]?', '', clean_model, flags=re.IGNORECASE)
clean_model = re.sub(r'[-_]{2,}', '-', clean_model) # Clean up multiple separators
clean_model = clean_model.strip('-_') # Clean up leading/trailing separators
provider_kwargs["model"] = clean_model
# Check if message history is compatible with reasoning
messages = provider_kwargs.get("messages", [])
is_compatible = _check_reasoning_compatibility(messages)
if is_compatible:
provider_kwargs["reasoning_effort"] = "low" # Use reasoning_effort instead of thinking
elif provider == "gemini":
provider_kwargs["custom_llm_provider"] = "gemini"
provider_kwargs.pop("store", None) # Gemini doesn't support store parameter
provider_kwargs.pop("parallel_tool_calls", None) # Gemini doesn't support parallel tool calls
else:
# For unknown providers, try ollama as fallback
return await self._fetch_response_litellm_ollama(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
elif ("An assistant message with 'tool_calls'" in str(e) or
"`tool_use` blocks must be followed by a user message with `tool_result`" in str(e) or # noqa: E501 # pylint: disable=C0301
"`tool_use` ids were found without `tool_result` blocks immediately after" in str(e) or # noqa: E501 # pylint: disable=C0301
"An assistant message with 'tool_calls' must be followed by tool messages" in str(e) or
"messages with role 'tool' must be a response to a preceeding message with 'tool_calls'" in str(e)):
print(f"Error: {str(e)}")
# Use the pretty message history printer instead of the simple loop
try:
from cai.util import print_message_history
print("\nCurrent message sequence causing the error:")
print_message_history(kwargs["messages"], title="Message Sequence Error")
except ImportError:
# Fall back to simple printing if the function isn't available
print("\nCurrent message sequence causing the error:")
for i, msg in enumerate(kwargs["messages"]):
role = msg.get("role", "unknown")
content_type = (
"text" if isinstance(msg.get("content"), str) else
"list" if isinstance(msg.get("content"), list) else
"None" if msg.get("content") is None else
type(msg.get("content")).__name__
)
tool_calls = "with tool_calls" if msg.get("tool_calls") else ""
tool_call_id = f", tool_call_id: {msg.get('tool_call_id')}" if msg.get("tool_call_id") else ""
print(f" [{i}] {role}{tool_call_id} (content: {content_type}) {tool_calls}")
# NOTE: EDGE CASE: Report Agent CTRL C error
#
# This fix CTRL-C error when message list is incomplete
# When a tool is not finished but the LLM generates a tool call
try:
from cai.util import fix_message_list
print("Attempting to fix message sequence...")
fixed_messages = fix_message_list(kwargs["messages"])
# Show the fixed messages if they're different
if fixed_messages != kwargs["messages"]:
try:
from cai.util import print_message_history
print_message_history(fixed_messages, title="Fixed Message Sequence")
except ImportError:
print("Messages fixed successfully.")
kwargs["messages"] = fixed_messages
except Exception as fix_error:
pass
return await self._fetch_response_litellm_openai(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
# this captures an error related to the fact
# that the messages list contains an empty
# content position
elif "expected a string, got null" in str(e):
print(f"Error: {str(e)}")
# Fix for null content in messages
kwargs["messages"] = [
msg if msg.get("content") is not None else
{**msg, "content": ""} for msg in kwargs["messages"]
]
return await self._fetch_response_litellm_openai(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
# Handle Anthropic error for empty text content blocks
elif ("text content blocks must be non-empty" in str(e) or
"cache_control cannot be set for empty text blocks" in str(e)): # noqa
# Print the error message only once
print(f"Error: {str(e)}") if not self.empty_content_error_shown else None
self.empty_content_error_shown = True
# Fix for empty content in messages for Anthropic models
kwargs["messages"] = [
msg if msg.get("content") not in [None, ""] else
{
**msg,
"content": "Empty content block"
} for msg in kwargs["messages"]
]
return await self._fetch_response_litellm_openai(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
else:
raise e
except litellm.exceptions.RateLimitError as e:
print("Rate Limit Error:" + str(e))
# Try to extract retry delay from error response or use default
retry_delay = 60 # Default delay in seconds
try:
# Extract the JSON part from the error message
json_str = str(e.message).split('VertexAIException - ')[-1]
error_details = json.loads(json_str)
retry_info = next(
(detail for detail in error_details.get('error', {}).get('details', [])
if detail.get('@type') == 'type.googleapis.com/google.rpc.RetryInfo'),
None
)
if retry_info and 'retryDelay' in retry_info:
retry_delay = int(retry_info['retryDelay'].rstrip('s'))
except Exception as parse_error:
print(f"Could not parse retry delay, using default: {parse_error}")
print(f"Waiting {retry_delay} seconds before retrying...")
time.sleep(retry_delay)
# fall back to ollama if openai API fails
except Exception as e: # pylint: disable=W0718
print(color("Error encountered: " + str(e), fg="yellow"))
try:
return await self._fetch_response_litellm_ollama(kwargs, model_settings, tool_choice, stream, parallel_tool_calls)
except Exception as execp: # pylint: disable=W0718
print("Error: " + str(execp))
return None
async def _fetch_response_litellm_openai(
self,
kwargs: dict,
model_settings: ModelSettings,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven,
stream: bool,
parallel_tool_calls: bool
) -> ChatCompletion | tuple[Response, AsyncStream[ChatCompletionChunk]]:
"""
Handle standard LiteLLM API calls for OpenAI and compatible models.
If a ContextWindowExceededError occurs due to a tool_call id being
too long, truncate all tool_call ids in the messages to 40 characters
and retry once silently.
"""
try:
if stream:
# Standard LiteLLM handling for streaming
ret = litellm.completion(**kwargs)
stream_obj = await litellm.acompletion(**kwargs)
response = Response(
id=FAKE_RESPONSES_ID,
created_at=time.time(),
model=self.model,
object="response",
output=[],
tool_choice="auto" if tool_choice is None or tool_choice == NOT_GIVEN
else cast(Literal["auto", "required", "none"], tool_choice),
top_p=model_settings.top_p,
temperature=model_settings.temperature,
tools=[],
parallel_tool_calls=parallel_tool_calls or False,
)
return response, stream_obj
else:
# Standard OpenAI handling for non-streaming
ret = litellm.completion(**kwargs)
return ret
except Exception as e:
error_msg = str(e)
# Handle both OpenAI and Anthropic error messages for tool_call_id
if (
"string too long" in error_msg
or "Invalid 'messages" in error_msg
and "tool_call_id" in error_msg
and "maximum length" in error_msg
):
# Truncate all tool_call ids in all messages to 40 characters
messages = kwargs.get("messages", [])
for msg in messages:
# Truncate tool_call_id in the message itself if present
if (
"tool_call_id" in msg
and isinstance(msg["tool_call_id"], str)
and len(msg["tool_call_id"]) > 40
):
msg["tool_call_id"] = msg["tool_call_id"][:40]
# Truncate tool_call ids in tool_calls if present
if "tool_calls" in msg and isinstance(msg["tool_calls"], list):
for tool_call in msg["tool_calls"]:
if (
isinstance(tool_call, dict)
and "id" in tool_call
and isinstance(tool_call["id"], str)
and len(tool_call["id"]) > 40
):
tool_call["id"] = tool_call["id"][:40]
kwargs["messages"] = messages
# Retry once, silently
if stream:
ret = litellm.completion(**kwargs)
stream_obj = await litellm.acompletion(**kwargs)
response = Response(
id=FAKE_RESPONSES_ID,
created_at=time.time(),
model=self.model,
object="response",
output=[],
tool_choice="auto"
if tool_choice is None or tool_choice == NOT_GIVEN
else cast(
Literal["auto", "required", "none"], tool_choice
),
top_p=model_settings.top_p,
temperature=model_settings.temperature,
tools=[],
parallel_tool_calls=parallel_tool_calls or False,
)
return response, stream_obj
else:
ret = litellm.completion(**kwargs)
return ret
else:
raise
async def _fetch_response_litellm_ollama(
self,
kwargs: dict,
model_settings: ModelSettings,
tool_choice: ChatCompletionToolChoiceOptionParam | NotGiven,
stream: bool,
parallel_tool_calls: bool,
) -> ChatCompletion | tuple[Response, AsyncStream[ChatCompletionChunk]]:
"""
Fetches a response from an Ollama or Qwen model using LiteLLM, ensuring
that the 'format' parameter is not set to a JSON string, which can cause
issues with the Ollama API.
Args:
kwargs (dict): Parameters for the completion request.
model_settings (ModelSettings): Model configuration.
tool_choice (ChatCompletionToolChoiceOptionParam | NotGiven): Tool choice.
stream (bool): Whether to stream the response.
parallel_tool_calls (bool): Whether to allow parallel tool calls.
Returns:
ChatCompletion or tuple[Response, AsyncStream[ChatCompletionChunk]]:
The completion response or a tuple for streaming.
"""
# Extract only supported parameters for Ollama
ollama_supported_params = {
"model": kwargs.get("model", ""),
"messages": kwargs.get("messages", []),
"stream": kwargs.get("stream", False)
}
# Add optional parameters if they exist and are not NOT_GIVEN
for param in ["temperature", "top_p", "max_tokens"]:
if param in kwargs and kwargs[param] is not NOT_GIVEN:
ollama_supported_params[param] = kwargs[param]
# Add extra headers if available
if "extra_headers" in kwargs:
ollama_supported_params["extra_headers"] = kwargs["extra_headers"]
# Add tools for compatibility with Qwen
if (
"tools" in kwargs
and kwargs.get("tools")
and kwargs.get("tools") is not NOT_GIVEN
):
ollama_supported_params["tools"] = kwargs.get("tools")
# Remove None values and filter out unsupported parameters
ollama_kwargs = {
k: v for k, v in ollama_supported_params.items()
if v is not None and k not in ["response_format", "store"]
}
# Check if this is a Qwen model
model_str = str(self.model).lower()
is_qwen = "qwen" in model_str
api_base = get_ollama_api_base()
if stream:
response = Response(
id=FAKE_RESPONSES_ID,
created_at=time.time(),
model=self.model,
object="response",
output=[],
tool_choice="auto"
if tool_choice is None or tool_choice == NOT_GIVEN
else cast(Literal["auto", "required", "none"], tool_choice),
top_p=model_settings.top_p,
temperature=model_settings.temperature,
tools=[],
parallel_tool_calls=parallel_tool_calls or False,
)
# Get streaming response
stream_obj = await litellm.acompletion(
**ollama_kwargs,
api_base=api_base,
custom_llm_provider="openai"
)
return response, stream_obj
else:
# Get completion response
return litellm.completion(
**ollama_kwargs,
api_base=api_base,
custom_llm_provider="openai",
)
def _intermediate_logs(self):
"""Intermediate logging if conditions are met."""
if (self.logger and
self.interaction_counter > 0 and
self.interaction_counter % self.INTERMEDIATE_LOG_INTERVAL == 0):
process_intermediate_logs(
self.logger.filename,
self.logger.session_id
)
def _get_client(self) -> AsyncOpenAI:
if self._client is None:
self._client = AsyncOpenAI()
return self._client
# Helper function to detect and format function calls from various models
def _detect_and_format_function_calls(self, delta):
"""
Helper to detect function calls in different formats and normalize them.
Handles Qwen specifics where function calls may be formatted differently.
Returns: List of normalized tool calls or None
"""
# Standard OpenAI-style tool_calls format
if hasattr(delta, 'tool_calls') and delta.tool_calls:
return delta.tool_calls
elif isinstance(delta, dict) and 'tool_calls' in delta and delta['tool_calls']:
return delta['tool_calls']
# Qwen/Ollama function_call format
if isinstance(delta, dict) and 'function_call' in delta:
function_call = delta['function_call']
return [{
'index': 0,
'id': f"call_{time.time_ns()}", # Generate a unique ID
'type': 'function',
'function': {
'name': function_call.get('name', ''),
'arguments': function_call.get('arguments', '')
}
}]
if isinstance(delta, dict) and 'content' in delta:
content = delta['content']
# Try to detect if the content is a JSON string with function call format
try:
if isinstance(content, str) and '{' in content and '}' in content:
# Try to extract JSON from the content (it might be embedded in text)
json_start = content.find('{')
json_end = content.rfind('}') + 1
if json_start >= 0 and json_end > json_start:
json_str = content[json_start:json_end]
parsed = json.loads(json_str)
if 'name' in parsed and 'arguments' in parsed:
# This looks like a function call in JSON format
return [{
'index': 0,
'id': f"call_{time.time_ns()}", # Generate a unique ID
'type': 'function',
'function': {
'name': parsed['name'],
'arguments': json.dumps(parsed['arguments']) if isinstance(parsed['arguments'], dict) else parsed['arguments']
}
}]
except Exception:
# If JSON parsing fails, just continue with normal processing
pass
# Anthropic-style tool_use format
if hasattr(delta, 'tool_use') and delta.tool_use:
tool_use = delta.tool_use
return [{
'index': 0,
'id': tool_use.get('id', f"tool_{time.time_ns()}"),
'type': 'function',
'function': {
'name': tool_use.get('name', ''),
'arguments': tool_use.get('input', '{}')
}
}]
elif isinstance(delta, dict) and 'tool_use' in delta and delta['tool_use']:
tool_use = delta['tool_use']
return [{
'index': 0,
'id': tool_use.get('id', f"tool_{time.time_ns()}"),
'type': 'function',
'function': {
'name': tool_use.get('name', ''),
'arguments': tool_use.get('input', '{}')
}
}]
return None
|